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Upstream influence in a two-fluid system 
By G. KEADY 
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Benjamin (1970) has calculated the upstream influence in open-channel flow, and 
has argued that a similar effect occurs when a body is moved along the axis of a 
tube of uniformly rotating fluid. In  the present paper Benjamin’s work is 
extended to the case of interfacial waves in a two-fluid system. It is shown that 
there are certain special flows for which the upstream influence vanishes. 

1. Introduction 
In  its simplest terms, the question to be answered is: what happens when a 

small body, or weak dipole, starts to move horizontally from rest, and continues 
a t  a subcritical velocity through a two-fluid system that is stably stratified and 
initially undisturbed? (A subcritical velocity is one which is less than the propaga- 
tion speed of long waves, as predicted by linear theory.) Two related phenomena 
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FIGURE 1. Illustration of the interfacial-wave problem: (a) obstacle propelled a t  constant 
velocity C in water initially a t  rest; ( b )  obstacle fixed in stream approaching with velocity 
C. 

arise: the body experiencesadrag due to the continualdevelopment of (smallampli- 
tude) waves on the leeward side, and surges propagate upstream and downstream 
a t  the long-wave speed. In particular, the flow remains undisturbed only ahead of 
the ever-lengthening upstream surge (figure 1). By taking the limit t + co at any 
distance x from the body, we obtain a steady flow F-,. Therefore, while it must be 
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true that the motion tends to its undisturbed form F, as 1x1 + 00 for any fixed t ,  no 
matter how large, we cannot infer that in the steady flow Fs the flow far upstream 
Fs,+ will be the same as the original undisturbed flow. That is, 

Fs,+ = lim lim F + lim lim F = Fo, 

Indeed we shall see that the flow Fa,+ differs from the original undisturbed flow 
Fo by second-order changes in the height of the interface, and by a shear across 
the interface which is of the same order as the Stokes drift velocity in the wave 
train. 

These upstream effects should be distinguished from the stronger effect of 
blocking, which is sometimes represented by a model based on non-dispersive 
non-linear shallow-water theory of the type suggested by figure 2 (Long 1970). 

x+w t-tw t-+m 2-m 

S u p e . r c r i t i c a 1 ~  -Subcritical- 

FIGURE 2. A model of ‘blocking’ when an obstacle is 
introduced into a stream (Long 1970, figure 3). 

In the present paper, the main approach is similar to that of Benjamin (1970), 
but it does differ in certain respects. Benjamin completed the calculation of 
upstream influence for open-channel flow and then gave an argument for the 
necessity of a similar effect when a body is moved along the axis of a tube of 
rotating fluid. Explicit details of the amount of upstream influence were available 
only for open-channel flow. In  this paper we shall calculate the amount of 
upstream influence for a two-fluid system. 

The calculations depend on the use of conservation equations 

for suitable ‘densities’ and ‘fluxes ’ Qj .  A suitable set of conservation equations 
is given in $ 2. The equations for conservation of mass and energy are straight- 
forward, but need to be supplemented by one further equation. To this end an 
extension to general stratified flows of Benjamin’s impulse principle was ori- 
ginally used, but we shall present, and use, a different conservation equation, 
(2.8), more suited to the problem at hand. Finally in $2,  expressions are given for 
the densities Pi and fluxes Q j  appropriate to uniform wave trains, and, with 
further approximation to slowly varying wave trains. For surface waves, the 
conservation equations were presented in this form by Whitham (1962). 

In $3.1 we apply the conservation equations to the virtually steady-flow 
region between B and C (figure 1) to find the wave resistance and the change in 
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mean level of the interface across the obstacle. In $3.2, by examining hhe whole 
flow system between A and D (figure l) ,  we calculate the amount of upstream 
influence. Simplifications, including the Boussinesq approximation, are briefly 
discussed. The analysis brings to light some special flows without upstream 
influence. 

The analysis cannot, however, be said to be rigorous. It has not been proved 
that the flow near the body becomes steady, and there are still some doubts about 
the perturbation procedure. 

The problem can be viewed as a perturbation problem involving two para- 
meters: large time and small amplitude. The known results of the linearized 
theory of surface waves are, first, that transients in the neighbourhood of the 
obstacle decay like t-*, and, second, that transients at  the rear end of the wave 
train are confined to a region whose length is O(t$),  the overall length of the train 
being O(t) .  It is also known that a long wave such as the forward surge can have 
an oscillatory frontal region, but the length of this is O(ts). Similar order estimates 
hold for interfacial waves; that is, the transient regions have lengths O(tv), v < 1. 
A n  example of the sort of differences which arise in the estimates is if one of the 
layers is infinitely deep the length of the oscillatory frontal region is O(t4). 

We shall assume, in accord with the linearized theory, that after a long time 
the motion in the neighbourhood of the obstacle becomes steady. 

If we average over distances O(tb), large compared to transient regions but 
small compared to the length of the wave train (that is, 0 < Po < ,8 < 1, for 
suitable Po), we shall obliterate the transient zones by the averaging process. 
Benjamin formalized this by means of an averaging operator A defined as 
follows : 1 x+5 

C(Z,Y, t )  = A5 = - 5G7 Y ,  t ) d X ,  2 J X - 5  
in which = ata with Po < /3 < 1. We then have 

and 

w 3  for t+co. 
at 

This can be used to replace the exact conservation equations (1.1) by their 
averages, a8 a&. -+2 = 0. 

at ax 

The simplification due to small amplitude then leads, in the case of surface gravity 
waves, to Whitham’s (1962) system obtained there in the slightly different con- 
text of slowly varying wave trains of small amplitude. 

It would be desirable, but difficult, to put the perturbation procedure on a 
firmer basis. The averaged conservation equations are clearly valid lomlly to the 
order calculated by Benjamin, but we apply them over large stretches of the flow 
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domain. It is possible to show the theory is valid for t large and wave amplitude a 
so small that ta is still small. The argument shows that for ta not small the terms 
in <, ai of higher order in a than the second (the errors in our approximation) 
may accumulate over the large regions throughout which the conservation laws 
are applied. The validity of the theory for very large time is crucial, but as yet no 
convincing demonstration of it has been given. 

These remarks on the reliability of the perturbation procedure apply not 
only to the two-fluid problem but also to the flows considered by Benjamin. The 
two-layer model, however, introduces a further difficulty. Although the linearized 
initial-value problem is well posed, it is not at all obvious that the same is true of 
the non-linear problem. The possibility of Kelvin-Helmholtz instability must be 
considered whenever even the smallest shear arises across any portion of the inter- 
face. The non-linear problem is well set if we have some additional effect, such as 
small viscosity or surface tension, or some density structure instead of a sharp 
interface. 

2. The conservation equations 
We shall find an approximate solution to the initial-value problem in which a 

body moves from rest in a two-fluid system. We suppose that the density of the 
lower layer is p,, and that its undisturbed depth is d,. The upper layer has density 
p2( < p l ) ,  and depth d,. Take y = 0 as the undisturbed level of the interface, and 
describe the height of the interface a t  subsequent times by y = ~ ( x ,  t ) .  Initially 
the fluid is a t  rest;; at t = 0 a small body starts to move along the bottom. By 
Kelvin’s circulation theorem (for an iriviscid liquid of uniform density), the flow 
in both layers is irrotational. We have the usual kinematical and dynamical 
conditions at the interface: the interface is a material surface, and the pressure 
is continuous across it. Thus, with the notation u = (u, v) = V#, 

} (2.1) 
V2#, = 0 ( -4  < y < q), 
V2#, = 0 (7 < Y < d2),  

qt +UiTx = vi a t  y = ~ ( x ,  t ) ,  ( 2 . 2 )  

[p(a$(x,  y, $)/at  + &(u2+ VZ) +sy)l = x ( t )  at y = qfx ,  t f ,  12.31 

where [f] = f ,  - f 2  and i = 1 , 2  distinguishes the two fluids. Further, on horizontal 
boundaries, 

v = 0. 

If the velocity of the body is U(t) in the x direction, we have 

(u - U ( t ) ) .  n = 0 (2.5) 

at the body surface, where n is the normal to the body. Usually, we shall suppose 
that the body is accelerated instantaneously from rest to a constant velocity C. 
I n  what follows, velocities ui, vi with no position argument indicated denote 
values at the interface, or, more precisely, limiting values as the interface is 
approached. 



Upstream influence in a two-fluid system 377 

Integrating equations (2.1) with respect to y across each layer, and applying 
the kinematical boundary conditions (2.2), we obtain 

at ax 
a7 aQ2 -- +- = 0, 
at ax 
a f  aJ 

ar aQ B 
-+L = 0,  where Q1 = 1 u,(y)dy, 
at ax - dl 

at ax 
--+> ar aQ = 0, where Q,  = /B'u,(y)dy. 

(2 .G)  

(2.7) 

We obtain a further conservation equation as follows: substituting from 

a a 
3 r ( x ,  t ) t )  = 3 9 i k  y ,  t )  +rl,v(x, y, t ) ,  a t  y = r(x ,  t ) ,  

into the pressure continuity condition (2.3), and then differentiating with respect 
to x (at fixed t and with y = ~ ( x ,  t ) ) ,  we have 

Since 

we have 

Using the kinematical conditions, we finally have 

with 

ar aJ 
at ax 
-+- = 0 1 

J = [~(T ,uv  + $(a2 - v2)  + g r ) ]  
For steady flow, this equation states that the difference [p(+(u2 + vz) + g r ) ]  in the 
Bernoulli constants across the interface is constant. 

Let us consider the approximation for large time. By means of the averaging 
operator defined in 3 1,  equations (2.6)-(2.8) become 

1 (2.9) 

The next approximation is to suppose that the displacement of the interface is 
small. In view of the approximation for large time it is plausible to regard the 
flow as a slowly varying wave train. Consider waves of frequency w ( k ) ,  wave- 
number k onastream withmean speeds e2and undisturbed depths d,, d,. With 
the notation wa = w - @<k, the linearized dispersion relation is 

(2.10) 
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(Lamb 1932, §§232-4) ;  this may be regarded as giving w as a function of k. We 
note for future reference a result obtained by differentiating (2.10) with respect 
to k: 

(2.11) 

where c: = w:/Ic, c,'i = dw:/dk. 

We compute the densities and fluxes for a uniform wave train from the quantities 
in table 1. The amplitude ofthe waves is a, and the wave energy per unit area is 
therefore E, = $(pl -p2)ga2.  Introducing the notation 

q = b ,  h , = d , + b  and h , = d , - b  

and averaging over a wavelength, we obtain the following expressions for the 
averaged densities and fluxes in ( 2 . 9 ) :  

The error of these expressions is o(E,). 

(2.12) 

Velocity in the upper layer : cash k(d2-y) 
u&, y, t )  = *,-aw: -cos 0 

sinh kd, 
sinh k(d2-y) v2(34 YY t )  = a 4  sinh kd2 sin 8 

Displacement of the interface : ~ ( z ,  t )  = b+acos e ;  8 = kx-wt  

Velocity in the lower layer: 

TABLE 1. Formulae for velocities uir vi used in computing 
averaged densities and fluxes 

The assumption that both layers are initially at  rest and of uniform depths 
d,, d, means that the velocities qi and height changes b are due entirely to the 
wave motion, and are all O(Ew) .  We now linearize the conservation equations, 
retaining only terms of the first order in E,, aklax, and &/at. Defining the mass- 
transport velocities 

we have ab au, %+a,- = 0 ax ' (2 .13)  

(2.14) ab au, --+a - = 0 
at ax ' 
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Away from any agency that does work, 

aE, aE, --+c - = 0. at 0 ax 

Further, changes in the wave-number propagate at the group velocity 

ak ak 
at o a x  -+c  - = 0. 
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( 2 . 1 5 ~ )  

(2.15b) 

( 2 . 1 6 ~ )  

(2.17) 

(If p2 = 0, this is equivalent to the set of equations given by Whitham 1962.) 
The system is hyperbolic, and one characteristic speed is clearly the group 
velocity. Noting that the energy equation, (2.16a), uncouples from the first three, 
(2.13)-(2.15), we can most easily obtain the remaining characteristic velocities by 
treating the energy (E,) terms of (2.15b) as forcing terms f ( x -  cot). By standard 
procedures we find that one is infinite, and the other two are + co and - co, where 

is the long-wave speed according to linearized theory. One characteristic velocity 
is infinite because changes in total volume flux a t  any point cause the volume flux 
everywhere else to change instantaneously. 

Equation ( 2 . 1 6 ~ )  must be modified if work is being done on the fluid. Because 
of the averaging, the effects of the body can be included just as if they were 
concentrated at a point on the x axis; thus, they appear as a forcing term in the 
energy equation, aE, aE, 

--+c __ = 9C6(x-Ct) ,  at g ax (2.16 b) 

since the rate at which the body does work is the drag 9 times its speed C. 
We are to solve the system (2.13), (2.14), (2.15b), (2.16b) and (2.17) with zero 

initial data. Using the fact that discontinuities propagate along characteristics, 
we anticipate the following qualitative features of the solution (see figure 1). 
(i) The forward surge advances at the velocity co, thus drawing ahead of the 
obstacle moving at subcritical velocity C. (Dispersive effects present a t  the 
surge are obliterated by the averaging, as discussed in 3 1.) (ii) The oscillatory 
wave train is stationary relative to the obstacle, so that the phase velocity c is 
equal to C, and the downstream end of the wave train advances at velocity 
cg < c,  thus falling steadily behind the obstacle. (Transients at the back are, 
again, obliterated by the averaging.) (iii) The rearward surge recedes at  the 
velocity - co. In  $ 3  the details of the solution are completed. We apply the con- 

aP aQ -+- = A( t )6 ( z -  V t )  at ax 

servation equations, 
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in the form of jump conditions. Integration over discontinuities gives 

[s],.;;,tr = v[p];,=,.:-t +A@), 
where P is the velocity of the jump. 

The values b of the mean height changes in the forward surge, the oscillatory 
train and the rearward surge, will be denoted by &+, &, and 8- respectively. The 
mass transport velocities in the corresponding regions are all O(E,) like the 
above S; they will be denoted by Ui+, Ui, and i&-. 

3. Main calculation: no shear across the interface 
3.1. The classical argument for the wave resistance 

We apply the conservation equations to the region between B and C in figure 
1 (a) .  As in Lamb (1932, 3 249) energy considerations give the classical formula for 

(3.1) the wave resistance, 

which states that the rate a t  which the body does work is equal to the rate of 
increase of energy in the uniform wave train. The remaining conservation 
equations are 

BC = (C - cg) E,, 

CS,-S+)C = (Ulw-771+)dl> 

-(Sw-S+)c = (U,w-U,+)d,, 

Eliminating the velocities Ui, - U,, we have 

It appears that whether the mean level of the interface is raised or lowered 
generally depends, not only on pl,pz,  d,, d,, but also on the speed a t  which the 
obstacle is propelled through the fluid. The mean level of the interface is lowered 
(8, - 8, > 0) or raised (8, - S,, < 0) ,  according as 

( 3 . 3 ~ ~ )  

( I n  the free surface problem, the mean level is always lowered.) This condition can 
be rewritten as 

where coth x 
F ( x )  = ~ - cosech2x, 

X 

(3.3b) 

so that B(x) - 1/2x2 as x+O and F ( x )  N l/x as x-fm. 

Also, P is a monotonically decreasing function. Thus for a Boussinesq fluid, we 
see that the mean level of the interface is lowered behind the obstacle if d, < d,, 
and raised if d, > d,. 
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The criterion (3 .3b)  simplifies in the limit k - t  0, although a/k2d: and a/k2& must 
remain small for validity of the theory. Note also that since c +co and k + 0 the 
denominator of (3 .2 )  tends to zero. The level is then lowered or raised behind the 
obstacle, relative to the level in front, according as 

PlIP2 z d2,/d$ 

In a different context (Benjamin 1966),  this criterion determines whether (a)  the 
crests of cnoidal waves are narrower than their troughs and the solitary wave is a 
wave of elevation (as happens in surface waves), or (b )  the crests are broader than 
the troughs and the solitary wave is a wave of depression. 

One can consider various other limits. The limit k +oo is probably less physically 
interesting than the limit k+ 0, because the slightest shear makes the lee waves 
unstable. In this case, the condition (3 .3b )  reduces to 

PlIP2 z dlId2. 
A different limiting situation arises if one of the fluid depths is very large: then 
the mean level is raised (8, - 8, > 0) or lowered (8, - Sw < 0) according as the 
top or the bottom layer has the large depth. Finally, in thelimitp,+ 0, the formula 
(3 .2 )  agrees with that for surface waves obtained by Benjamin (1970) and 
Whitham (1962) .  

The results of fj 3.1 have also been obtained by the use of ordinary flow force 
and energy methods, which are valid in steady internal-wave problems and have 
been applied several times before, e.g. by Benjamin (1966).  

3.2. Calculation of the upstream influence 
In  $3.1 we found the result (3 .2 )  for the change 8, - Sw in mean level behind the 
obstacle relative to the level in front. This was derived from an analysis of the 
steady flow prevailing near the body. TO consider upstream influence, we must 
investigate the whole flow system. 

We calculate the upstream influence S, as follows: equation ( 2 . 1 5 ~ ) ~  integrated 
between A and D, gives 

(co - c )  [@+I + (c - c g )  [ P @ W l +  (co + cg) b@-l = 0. ( 3 . 4 ~ )  

For the case of a free-surface flow (p2 = 0) this equation states that the spatial 
average of the horizontal velocity over the whole system is zero. We eliminate 
el by using the mass conservation equations, 

a, Ulw- = a, a,, + ~ = ( c g  - c )  8, + CS,, ( PlCldl Ewfl 1 

and similarly &2. These give 
(co - c )  (co + c - cg)  8, + c(c - cg) 8, - co(c + cg)  6- = C W C g ) E w  [i]. (3 .4b )  

d P , - P , ) C  d 
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Finally, the overall condition of mass conservation is 

(cg - c) 6, + (c - CJ 6, + (cg + CQ) 6- = 0. (345) 

Equations (3.2), (3 .4b)  and (3.5) are a set of three linear equations for the three 
unknowns a+, SW, 6-. These may be solved for 8,: 

The condition for no upstream influence, 8, = 0,  is thus 

For the Boussinesq approximation with d, = d, there is no upstream influence 
(6, = 0). In $3.1 it was demonstrated that, in this particular case, the mean 
levels upstream and in the wave train are the same: 6+-6, = 0;  moreover, by 
the mass-conservation equation ( 3 4 ,  6- = 0. (We remark that this does not 
contradict Benjamin's (1970) argument because here there is impulse in the wave 
train.) If the Boussinesq approximation is not made, it is possible to have no 
upstream influence (8, = 0)  and yet a change in the mean height of the wave train 

One can again consider various limits. Making use of (2.11) in the limit p2 + 0, 
we recover Benjamin's results for the free-surface problem: a positive surge 
propagating upstream (6, > 0 ) ,  a decrease in level behind the body (8, - 6, > 0 
with 6, < 0 ) ,  and a negative surge propagating downstream (6- < 0) .  Benjamin 
(1970, figure 2) has given a graph of the quantities 6,d,/a2, 6,d,/a2, 6-d,/a2 as 
functions of the Froude number F, where F2 = c2/ct = (tanh kd,)/kd,. For long 
waves, E -+ 0,  the surge is positive (as in the free-surface problem) or negative, 

(S+-S, =!= 0). 

according as 

A different limit is obtained if one of the layers is very much deeper than the 
other: when the upper layer is much deeper than the lower, the forward surge is 
positive; if the upper layer is much more shallow than the lower, the forward 
surge is negative. 

4. Results: shear across the interface 
The model described in this section is admittedly artificial. The linearized 

initial-value problem is not well set, because of the Kelvin-Helmholtz instability, 
and there is no reason to suppose that the non-linear problem is better in this 
respect. However, the results below may be suggestive for the treatment of 
continuous stratification. Choose axes fixed with respect to the body; let the 
undisturbed depths d,, d,, and undisturbed velocities V,, V,, define 8 subcritical 
flow. We suppose that, after a large time, a steady wave train is set up on one side 
of the obstacle, which will be called the ' downstream ' side; and that as before, the 
second-order mean height changes are propagated a t  the long wave speeds 
C+,C- and a t  the group velocity cs. We quote the following two results on the 
vanishing of the upstream influence 6,. (i) If the layer depths are equal and 
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p1 V: = pz V;, then 8, = 0. (The analogy with the Long model is suggestive.) 
(ii) For a given pair of densities and basic velocities V,, V, (which allow subcritical 
flows), one can always find a ratio dz/d, of layer depths for which the upstream 
influence vanishes. 

5.  Conclusions 
The main qualitative result is as follows: when the bottom layer is the more 

shallow, the case of waves at an interface is very similar to the case of surface 
waves. But when the top layer is the more shallow, the mean height changes in 
the present situation of interfacial waves are opposite to those in the case of 
surface waves (figure 3). In  view of this change of sign, it is not surprising that 
there are special instances in which there is no upstream influence. Such a con- 
tinuity argument suggests that there will always be a ratio of layer depths for 
which there is no upstream influence to all orders in the amplitude expansion. 

a 
-C 

FIGUFCE 3. Height changes when (a)  the lower layer or 
( b )  the upper layer, is the shallower. 

There is an alternative approach to questions of upstream influence; namely 
explicit expansion in a small parameter and the solution of a sequence of initial- 
value problems for the successive terms of the expansion. McIntyre (1971) has 
used such a procedure to obtain the upstream influence to second order for uni- 
formly stratified and rotating flows. If results reached by this method agree with 
those reached by the method used in 0 3, in such cases where both methods can be 
applied, it will be desirable to put the entire perturbation scheme on a firmer 
basis; it will also be desirable to determine whether upstream influence exists a t  
very large time. 
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